پندار pen dar

این وبلاگ شامل مطالب علمی وفرهنگی و تفریحی میباشد

پندار pen dar

این وبلاگ شامل مطالب علمی وفرهنگی و تفریحی میباشد

از سنگ اورانیم تا بمب اتم

 
از سنگ اورانیم تا بمب اتم
اورانیوم که ماده خام اصلی مورد نیاز برای تولید انرژی در برنامه های صلح آمیز یا نظامی هسته ای است، از طریق استخراج از معادن زیرزمینی یا سر باز بدست می آید. اگر چه این عنصر بطور طبیعی در سرتاسر جهان یافت میشود اما تنها حجم کوچکی از آن بصورت متراکم در معادن موجود است...

[ کوانتوم و فیزیک جدید ]

از سنگ اورانیم تا بمب اتم

استخراج اورانیوم از معدن

اورانیوم که ماده خام اصلی مورد نیاز برای تولید انرژی در برنامه های صلح آمیز یا نظامی هسته ای است، از طریق استخراج از معادن زیرزمینی یا سر باز بدست می آید. اگر چه این عنصر بطور طبیعی در سرتاسر جهان یافت میشود اما تنها حجم کوچکی از آن بصورت متراکم در معادن موجود است.

هنگامی که هسته اتم اورانیوم در یک واکنش زنجیره ای شکافته شود مقداری انرژی آزاد خواهد شد.

برای شکافت هسته اتم اورانیوم، یک نوترون به هسته آن شلیک میشود و در نتیجه این فرایند، اتم مذکور به دو اتم کوچکتر تجزیه شده و تعدادی نوترون جدید نیز آزاد میشود که هرکدام به نوبه خود میتوانند هسته های جدیدی را در یک فرایند زنجیره ای تجزیه کنند.

مجموع جرم اتمهای کوچکتری که از تجزیه اتم اورانیوم بدست می آید از کل جرم اولیه این اتم کمتر است و این بدان معناست که مقداری از جرم اولیه که ظاهرا ناپدید شده در واقع به انرژی تبدیل شده است، و این انرژی با استفاده از رابطه E=MC۲ یعنی رابطه جرم و انرژی که آلبرت اینشتین نخستین بار آنرا کشف کرد قابل محاسبه است.

اورانیوم به صورت دو ایزوتوپ مختلف در طبیعت یافت میشود. یعنی اورانیوم U۲۳۵ یا U۲۳۸ که هر دو دارای تعداد پروتون یکسانی بوده و تنها تفاوتشان در سه نوترون اضافه ای است که در هسته U۲۳۸ وجود دارد. اعداد ۲۳۵ و ۲۳۸ بیانگر مجموع تعداد پروتونها و نوترونها در هسته هر کدام از این دو ایزوتوپ است.

برای بدست آوردن بالاترین بازدهی در فرایند زنجیره ای شکافت هسته باید از اورانیوم ۲۳۵ استفاده کرد که هسته آن به سادگی شکافته میشود. هنگامی که این نوع اورانیوم به اتمهای کوچکتر تجزیه میشود علاوه بر آزاد شدن مقداری انرژی حرارتی دو یا سه نوترون جدید نیز رها میشود که در صورت برخورد با اتمهای جدید اورانیوم بازهم انرژی حرارتی بیشتر و نوترونهای جدید آزاد میشود.

اما بدلیل "نیمه عمر" کوتاه اورانیوم ۲۳۵ و فروپاشی سریع آن، این ایزوتوپ در طبیعت بسیار نادر است بطوری که از هر ۱۰۰۰ اتم اورانیوم موجود در طبیعت تنها هفت اتم از نوع U۲۳۵ بوده و مابقی از نوع سنگینتر U۲۳۸ است.

فراوری

 س
نگ معدن اورانیوم بعد از استخراج، در آسیابهائی خرد و به گردی نرم تبدیل میشود. گرد بدست آمده سپس در یک فرایند شیمیائی به ماده جامد زرد رنگی تبدیل میشود که به کیک زرد موسوم است. کیک زرد دارای خاصیت رادیو اکتیویته است و ۶۰ تا ۷۰ درصد آنرا اورانیوم تشکیل میدهد.

دانشمندان هسته ای برای دست یابی هرچه بیشتر به ایزوتوپ نادر U۲۳۵ که در تولید انرژی هسته ای نقشی کلیدی دارد، از روشی موسوم به غنی سازی استفاده می کنند. برای این کار، دانشمندان ابتدا کیک زرد را طی فرایندی شیمیائی به ماده جامدی به نام هگزافلوئورید اورانیوم تبدیل میکنند که بعد از حرارت داده شدن در دمای حدود ۶۴ درجه سانتیگراد به گاز تبدیل میشود.

کیک زرد دارای خاصیت رادیو اکتیویته است و ۶۰ تا ۷۰ درصد آنرا اورانیوم تشکیل میدهد

هگزافلوئورید اورانیوم که در صنعت با نام ساده هگز شناخته میشود ماده شیمیائی خورنده ایست که باید آنرا با احتیاط نگهداری و جابجا کرد. به همین دلیل پمپها و لوله هائی که برای انتقال این گاز در تاسیسات فراوری اورانیوم بکار میروند باید از آلومینیوم و آلیاژهای نیکل ساخته شوند. همچنین به منظور پیشگیری از هرگونه واکنش شیمیایی برگشت ناپذیر باید این گاز را دور از معرض روغن و مواد چرب کننده دیگر نگهداری کرد.

 


غنی سازی

هدف از غنی سازی تولید اورانیومی است که دارای درصد بالایی از ایزوتوپ U۲۳۵ باشد.

اورانیوم مورد استفاده در راکتورهای اتمی باید به حدی غنی شود که حاوی ۲ تا ۳ درصد اورانیوم ۲۳۵ باشد، در حالی که اورانیومی که در ساخت بمب اتمی بکار میرود حداقل باید حاوی ۹۰ درصد اورانیوم ۲۳۵ باشد.

یکی از روشهای معمول غنی سازی استفاده از دستگاههای سانتریفوژ گاز است.

سانتریفوژ از اتاقکی سیلندری شکل تشکیل شده که با سرعت بسیار زیاد حول محور خود می چرخد. هنگامی که گاز هگزا فلوئورید اورانیوم به داخل این سیلندر دمیده شود نیروی گریز از مرکز ناشی از چرخش آن باعث میشود که مولکولهای سبکتری که حاوی اورانیوم ۲۳۵ است در مرکز سیلندر متمرکز شوند و مولکولهای سنگینتری که حاوی اورانیوم ۲۳۸ هستند در پایین سیلندر انباشته شوند.


اورانیوم ۲۳۵ غنی شده ای که از این طریق بدست می آید سپس به داخل سانتریفوژ دیگری دمیده میشود تا درجه خلوص آن باز هم بالاتر رود. این عمل بارها و بارها توسط سانتریفوژهای متعددی که بطور سری به یکدیگر متصل میشوند تکرار میشود تا جایی که اورانیوم ۲۳۵ با درصد خلوص مورد نیاز بدست آید.

آنچه که پس از جدا سازی اورانیوم ۲۳۵ باقی میماند به نام اورانیوم خالی یا فقیر شده شناخته میشود که اساسا از اورانیوم ۲۳۸ تشکیل یافته است. اورانیوم خالی فلز بسیار سنگینی است که اندکی خاصیت رادیو اکتیویته دارد و از آن برای ساخت گلوله های توپ ضد زره پوش و اجزای برخی جنگ افزار های دیگر از جمله منعکس کننده نوترونی در بمب اتمی استفاده میشود.

یک شیوه دیگر غنی سازی روشی موسوم به دیفیوژن یا روش انتشاری است.

دراین روش گاز هگزافلوئورید اورانیوم به داخل ستونهایی که جدار آنها از اجسام متخلخل تشکیل شده دمیده میشود. سوراخهای موجود در جسم متخلخل باید قدری از قطر مولکول هگزافلوئورید اورانیوم بزرگتر باشد.

در نتیجه این کار مولکولهای سبکتر حاوی اورانیوم ۲۳۵ با سرعت بیشتری در این ستونها منتشر شده و تفکیک میشوند. این روش غنی سازی نیز باید مانند روش سانتریفوژ بارها و باره تکرار شود.

راکتور هسته ای

راکتور هسته ای وسیله ایست که در آن فرایند شکافت هسته ای بصورت کنترل شده انجام میگیرد. انرژی حرارتی بدست آمده از این طریق را می توان برای بخار کردن آب و به گردش درآوردن توربین های بخار ژنراتورهای الکتریکی مورد استفاده قرار داد.

اورانیوم غنی شده ، معمولا به صورت قرصهائی که سطح مقطعشان به اندازه یک سکه معمولی و ضخامتشان در حدود دو و نیم سانتیمتر است در راکتورها به مصرف میرسند. این قرصها روی هم قرار داده شده و میله هایی را تشکیل میدهند که به میله سوخت موسوم است. میله های سوخت سپس در بسته های چندتائی دسته بندی شده و تحت فشار و در محیطی عایقبندی شده نگهداری میشوند.

در بسیاری از نیروگاهها برای جلوگیری از گرم شدن بسته های سوخت در داخل راکتور، این بسته ها را داخل آب سرد فرو می برند. در نیروگاههای دیگر برای خنک نگه داشتن هسته راکتور ، یعنی جائی که فرایند شکافت هسته ای در آن رخ میدهد ، از فلز مایع (سدیم) یا گاز دی اکسید کربن استفاده می شود.

1- هسته راکتور
2-پمپ خنک کننده
3- میله های سوخت
4- مولد بخار
5- هدایت بخار به داخل توربین مولد برق

برای تولید انرژی گرمائی از طریق فرایند شکافت هسته ای ، اورانیومی که در هسته راکتور قرار داده میشود باید از جرم بحرانی بیشتر (فوق بحرانی) باشد. یعنی اورانیوم مورد استفاده باید به حدی غنی شده باشد که امکان آغاز یک واکنش زنجیره ای مداوم وجود داشته باشد.

برای تنظیم و کنترل فرایند شکافت هسته ای در یک راکتور از میله های کنترلی که معمولا از جنس کادمیوم است استفاده میشود. این میله ها با جذب نوترونهای آزاد در داخل راکتور از تسریع واکنشهای زنجیره ای جلوگیری میکند. زیرا با کاهش تعداد نوترونها ، تعداد واکنشهای زنجیره ای نیز کاهش میابد.

حدودا ۴۰۰ نیروگاه هسته ای در سرتاسر جهان فعال هستند که تقریبا ۱۷ درصد کل برق مصرفی در جهان را تامین میکنند. از جمله کاربردهای دیگر راکتورهای هسته ای، تولید نیروی محرکه لازم برای جابجایی ناوها و زیردریایی های اتمی است.

باز فراوری

برای بازیافت اورانیوم از سوخت هسته ای مصرف شده در راکتور از عملیات شیمیایی موسوم به بازفراوری استفاده میشود. در این عملیات، ابتدا پوسته فلزی میله های سوخت مصرف شده را جدا میسازند و سپس آنها را در داخل اسید نیتریک داغ حل میکنند.

در نتیجه این عملیات، ۱% پلوتونیوم ، ۳% مواد زائد به شدت رادیو اکتیو و ۹۶% اورانیوم بدست می آید که دوباره میتوان آنرا در راکتور به مصرف رساند.

راکتورهای نظامی این کار را بطور بسیار موثرتری انجام میدهند. راکتور و تاسیسات باز فراوری مورد نیاز برای تولید پلوتونیوم را میتوان بطور پنهانی در داخل ساختمانهای معمولی جاسازی کرد. به همین دلیل، تولید پلوتونیوم به این طریق، برای هر کشوری که بخواهد بطور مخفیانه تسلیحات اتمی تولید کند گزینه جذابی خواهد بود.

بمب پلوتونیومی
استفاده از پلوتونیوم به جای اورانیوم در ساخت بمب اتمی مزایای بسیاری دارد. تنها چهار کیلوگرم پلوتونیوم برای ساخت بمب اتمی با قدرت انفجار ۲۰ کیلو تن کافی است. در عین حال با تاسیسات بازفراوری نسبتا کوچکی میتوان چیزی حدود ۱۲ کیلوگرم پلوتونیوم در سال تولید کرد.

بمب پلوتونیومی
1- منبع یا مولد نوترونی
2- هسته پلوتونیومی
3- پوسته منعکس کننده (بریلیوم)
4- ماده منفجره پرقدرت
5- چاشنی انفجاری

کلاهک هسته ای شامل گوی پلوتونیومی است که اطراف آنرا پوسته ای موسوم به منعکس کننده نوترونی فرا گرفته است. این پوسته که معمولا از ترکیب بریلیوم و پلونیوم ساخته میشود، نوترونهای آزادی را که از فرایند شکافت هسته ای به بیرون میگریزند، به داخل این فرایند بازمی تاباند.

استفاده از منعکس کننده نوترونی عملا جرم بحرانی را کاهش میدهد و باعث میشود که برای ایجاد واکنش زنجیره ای مداوم به پلوتونیوم کمتری نیاز باشد.

برای کشور یا گروه تروریستی که بخواهد بمب اتمی بسازد، تولید پلوتونیوم با کمک راکتورهای هسته ای غیر نظامی از تهیه اورانیوم غنی شده آسانتر خواهد بود. کارشناسان معتقدند که دانش و فناوری لازم برای طراحی و ساخت یک بمب پلوتونیومی ابتدائی، از دانش و فنآوری که حمله کنندگان با گاز اعصاب به شبکه متروی توکیو در سال ۱۹۹۵ در اختیار داشتند پیشرفته تر نیست.

چنین بمب پلوتونیومی میتواند با قدرتی معادل ۱۰۰ تن تی ان تی منفجر شود، یعنی ۲۰ مرتبه قویتر از قدرتمندترین بمبگزاری تروریستی که تا کنون در جهان رخ داده است.

بمب اورانیومی

هدف طراحان بمبهای اتمی ایجاد یک جرم فوق بحرانی ( از اورانیوم یا پلوتونیوم) است که بتواند طی یک واکنش زنجیره ای مداوم و کنترل نشده، مقادیر متنابهی انرژی حرارتی آزاد کند.

یکی از ساده ترین شیوه های ساخت بمب اتمی استفاده از طرحی موسوم به "تفنگی" است که در آن گلوله کوچکی از اورانیوم که از جرم بحرانی کمتر بوده به سمت جرم بزرگتری از اورانیوم شلیک میشود بگونه ای که در اثر برخورد این دو قطعه، جرم کلی فوق بحرانی شده و باعث آغاز واکنش زنجیره ای و انفجار هسته ای میشود.

کل این فرایند در کسر کوچکی از ثانیه رخ میدهد.

جهت تولید سوخت مورد نیاز بمب اتمی، هگزا فلوئورید اورانیوم غنی شده را ابتدا به اکسید اورانیوم و سپس به شمش فلزی اورانیوم تبدیل میکنند. انجام این کار از طریق فرایندهای شیمیائی و مهندسی نسبتا ساده ای امکان پذیر است.


قدرت انفجار یک بمب اتمی معمولی حداکثر ۵۰ کیلو تن است، اما با کمک روش خاصی که متکی بر مهار خصوصیات جوش یا گداز هسته ای است میتوان قدرت بمب را افزایش داد.

در فرایند گداز هسته ای ، هسته های ایزوتوپهای هیدروژن به یکدیگر جوش خورده و هسته اتم هلیوم را ایجاد میکنند. این فرایند هنگامی رخ میدهد که هسته های اتمهای هیدروژن در معرض گرما و فشار شدید قرار بگیرند. انفجار بمب اتمی گرما و فشار شدید مورد نیاز برای آغاز این فرایند را فراهم میکند.

طی فرایند گداز هسته ای نوترونهای بیشتری رها میشوند که با تغذیه واکنش زنجیره ای، انفجار شدیدتری را بدنبال می آورند. اینگونه بمبهای اتمی تقویت شده به بمبهای هیدروژنی یا بمبهای اتمی حرارتی موسومند.

فیبر نوری چیست و کاربرد و عملکرد فیبر نوری چگونه است

 
فیبر نوری چیست و کاربرد و عملکرد فیبر نوری چگونه است
فیبر نوری یکی از محیط های انتقال داده با سرعت بالا است . امروزه از فیبر نوری در موارد متفاوتی نظیر: شبکه های تلفن شهری و بین شهری ، شبکه های کامپیوتری و اینترنت استفاده بعمل می آید. فیبرنوری رشته ای از تارهای شیشه ای بوده که هر یک از تارها دارای ضخامتی معادل تار موی انسان را داشته و از آنان برای انتقال اطلاعات در مسافت های طولانی استفاده می شود.

فیبر نوری چیست و کاربرد و عملکرد فیبر نوری چگونه است
 
پیش گفتار

 

فیبر نوری یکی از محیط های انتقال داده با سرعت بالا است . امروزه از فیبر نوری در موارد متفاوتی نظیر: شبکه های تلفن شهری و بین شهری ، شبکه های کامپیوتری و اینترنت استفاده بعمل می آید. فیبرنوری رشته ای از تارهای شیشه ای بوده که هر یک از تارها دارای ضخامتی معادل تار موی انسان را داشته و از آنان برای انتقال اطلاعات در مسافت های طولانی استفاده می شود.

مبانی فیبر نوری

فیبر نوری ، رشته ای از تارهای بسیار نازک شیشه ای بوده که قطر هر یک از تارها نظیر قطر یک تار موی انسان است . تارهای فوق در کلاف هائی سازماندهی و کابل های نوری را بوجود می آورند. از فیبر نوری بمنظور ارسال سیگنال های نوری در مسافت های طولانی استفاده می شود.

مزایای فیبر نوری

فیبر نوری در مقایسه با سیم های های مسی دارای مزایای زیر است :

· ارزانتر. هزینه چندین کیلومتر کابل نوری نسبت به سیم های مسی کمتر است .

· نازک تر. قطر فیبرهای نوری بمراتب کمتر از سیم های مسی است .

· ظرفیت بالا. پهنای باند فیبر نوری بمنظور ارسال اطلاعات بمراتب بیشتر از سیم مسی است .

· تضعیف ناچیز. تضعیف سیگنال در فیبر نوری بمراتب کمتر از سیم مسی است .

· سیگنال های نوری . برخلاف سیگنال های الکتریکی در یک سیم مسی ، سیگنا ل ها ی نوری در یک فیبر تاثیری بر فیبر دیگر نخواهند داشت .

· مصرف برق پایین . با توجه به سیگنال ها در فیبر نوری کمتر ضعیف می گردند ، بنابراین می توان از فرستنده هائی با میزان برق مصرفی پایین نسبت به فرستنده های الکتریکی که از ولتاژ بالائی استفاده می نمایند ، استفاده کرد.

· سیگنال های دیجیتال . فیبر نور ی مناسب بمنظور انتقال اطلاعات دیجیتالی است .

· غیر اشتعال زا . با توجه به عدم وجود الکتریسیته ، امکان بروز آتش سوزی وجود نخواهد داشت .

· سبک وزن . وزن یک کابل فیبر نوری بمراتب کمتر از کابل مسی (قابل مقایسه) است.

· انعطاف پذیر . با توجه به انعظاف پذیری فیبر نوری و قابلیت ارسال و دریافت نور از آنان، در موارد متفاوت نظیر دوربین های دیجیتال با موارد کاربردی خاص مانند : عکس برداری پزشکی ، لوله کشی و ...استفاده می گردد.

با توجه به مزایای فراوان فیبر نوری ، امروزه از این نوع کابل ها در موارد متفاوتی استفاده می شود. اکثر شبکه های کامپیوتری و یا مخابرات ازراه دور در مقیاس وسیعی از فیبر نوری استفاده می نماین

بخش های مختلف فیبر نوری

یک فیبر نوری از سه بخش متفاوت تشکیل شده است :

هسته (Core)

هسته نازک شیشه ای در مرکز فیبر که سیگنا ل های نوری در آن حرکت می نمایند.

روکش Cladding  بخش خارجی فیبر بوده که دورتادور هسته را احاطه کرده و باعث برگشت نورمنعکس شده به هسته می گردد.

بافر رویه Buffer Coating  

روکش پلاستیکی که باعث حفاظت فیبر در مقابل رطوبت و سایر موارد آسیب پذیر ، است .

انواع فیبر نوری

صدها و هزاران نمونه از رشته های نوری فوق در دسته هائی سازماندهی شده و کابل های نوری را بوجود می آورند. هر یک از کلاف های فیبر نوری توسط یک روکش هائی با نام Jacket محافظت می گردند. فیبر های نوری در دو گروه عمده ارائه می گردند:

فیبرهای تک حالته (Single-Mode)

 بمنظور ارسال یک سیگنال در هر فیبر استفاده می شود نظیر : تلفن

فیبرهای چندحالته Multi-Mode

بمنظور ارسال چندین سیگنال در یک فیبر استفاده می شود( نظیر : شبکه های کامپیوتری)

فیبرهای تک حالته دارای یک هسته کوچک ( تقریبا" ۹ میکرون قطر ) بوده و قادر به ارسال نور لیزری مادون قرمز ( طول موج از ۱۳۰۰ تا ۱۵۵۰ نانومتر) می باشند. فیبرهای چند حالته دارای هسته بزرگتر ( تقریبا" ۵ / ۶۲ میکرون قطر ) و قادر به ارسال نورمادون قرمز از طریق LED می باشند 

ارسال نور در فیبر نوری

فرض کنید ، قصد داشته باشیم با استفاده از یک چراغ قوه یک راهروی بزرگ و مستقیم را روشن نمائیم . همزمان با روشن نمودن چراغ قوه ، نور مربوطه در طول مسیر مسفقیم راهرو تابانده شده و آن را روشن خواهد کرد. با توجه به عدم وجود خم و یا پیچ در راهرو در رابطه با تابش نور چراغ قوه مشکلی وجود نداشته و چراغ قوه می تواند ( با توجه به نوع آن ) محدوده مورد نظر را روشن کرد. در صورتیکه راهروی فوق دارای خم و یا پیچ باشد ، با چه مشکلی برخورد خواهیم کرد؟
در این حالت می توان از یک آیینه در محل پیچ راهرو استفاده تا باعث انعکاس نور از زاویه مربوطه گردد.در صورتیکه راهروی فوق دارای پیچ های زیادی باشد ، چه کار بایست کرد؟ در چنین حالتی در تمام طول مسیر دیوار راهروی مورد نظر ، می بایست از آیینه استفاده کرد. بدین ترتیب نور تابانده شده توسط چراغ قوه (با یک زاویه خاص) از نقطه ای به نقطه ای دیگر حرکت کرده ( جهش کرده و طول مسیر راهرو را طی خواهد کرد). عملیات فوق مشابه آنچیزی است که در فیبر نوری انجام می گیرد.

تکنولوژی ( فن آوری ) فیبر نوری

نور، در کابل فیبر نوری از طریق هسته (نظیر راهروی مثال ارائه شده ) و توسط جهش های پیوسته با توجه به سطح آبکاری شده ( Cladding) ( مشابه دیوارهای شیشه ای مثال ارائه شده ) حرکت می کند.( مجموع انعکاس داخلی ) . با توجه به اینکه سطح آبکاری شده ، قادر به جذب نور موجود در هسته نمی باشد ، نور قادر به حرکت در مسافت های طولانی می باشد. برخی از سیگنا ل های نوری بدلیل عدم خلوص شیشه موجود ، ممکن است دچار نوعی تضعیف در طول هسته گردند. میزان تضعیف سیگنال نوری به درجه خلوص شیشه و طول موج نور انتقالی دارد. ( مثلا" موج با طول ۸۵۰ نانومتر بین ۶۰ تا ۷۵ درصد در هر کیلومتر ، موج با طول ۱۳۰۰ نانومتر بین ۵۰ تا ۶۰ درصد در هر کیلومتر ، موج با طول ۱۵۵۰ نانومتر بیش از ۵۰ درصد در هر کیلومتر

 

سیستم رله فیبر نوری

بمنظور آگاهی از نحوه استفاده فیبر نوری در سیستم های مخابراتی ، مثالی را دنبال خواهیم کرد که مربوط به یک فیلم سینمائی و یا مستند در رابطه با جنگ جهانی دوم است . در فیلم فوق دو ناوگان دریائی که بر روی سطح دریا در حال حرکت می باشند ، نیاز به برقراری ارتباط با یکدیگر در یک وضعیت کاملا" بحرانی و توفانی را دارند. یکی از ناوها قصد ارسال پیام برای ناو دیگر را دارد.کاپیتان ناو فوق پیامی برای یک ملوان که بر روی عرشه کشتی مستقر است ، ارسال می دارد. ملوان فوق پیام دریافتی را به مجموعه ای از کدهای مورس ( نقطه و فاصله ) ترجمه می نماید. در ادامه ملوان مورد نظر با استفاده از یک نورافکن اقدام به ارسال پیام برای ناو دیگر می نماید.

یک ملوان بر روی عرشه کشتی دوم ، کدهای مورس ارسالی را مشاهده می نماید. در ادامه ملوان فوق کدهای فوق را به یک زبان خاص ( مثلا" انگلیسی ) تبدیل و آنها را برای کاپیتان ناو ارسال می دارد. فرض کنید فاصله دو ناو فوق از یکدیگر بسار زیاد ( هزاران مایل ) بوده و بمنظور برقرای ارتباط بین آنها از یک سیتستم مخابراتی مبتنی بر فیبر نوری استفاده گردد.

سیستم رله فیبر نوری از عناصر زیر تشکیل شده است :

فرستنده . مسئول تولید و رمزنگاری سیگنال های نوری است .

فیبر نوری مدیریت سیکنال های نوری در یک مسافت را برعهده می گیرد.

بازیاب نوری . بمنظور تقویت سیگنا ل های نوری در مسافت های طولانی استفاده می گردد.

· دریافت کننده نوری . سیگنا ل های نوری را دریافت و رمزگشائی می نماید.

در ادامه به بررسی هر یک از عناصر فوق خواهیم پرداخت .

فرستنده

وظیفه فرستنده، مشابه نقش ملوان بر روی عرشه کشتی ناو فرستنده پیام است . فرستنده سیگنال های نوری را دریافت و دستگاه نوری را بمنظور روشن و خاموش شدن در یک دنباله مناسب ( حرکت منسجم ) هدایت می نماید. فرستنده ، از لحاظ فیزیکی در مجاورت فیبر نوری قرار داشته و ممکن است دارای یک لنز بمنظور تمرکز نور در فیبر باشد. لیزرها دارای توان بمراتب بیشتری نسبت به LED می باشند. قیمت آنها نیز در مقایسه با LED بمراتب بیشتر است . متداولترین طول موج سیگنا ل های نوری ، ۸۵۰ نانومتر ، ۱۳۰۰ نانومتر و ۱۵۵۰ نانومتر است .

بازیاب ( تقویت کننده ) نوری

همانگونه که قبلا" اشاره گردید ، برخی از سیگنال ها در مواردیکه مسافت ارسال اطلاعات طولانی بوده ( بیش از یک کیلومتر ) و یا از مواد خالص برای تهیه فیبر نوری ( شیشه ) استفاده نشده باشد ، تضعیف و از بین خواهند رفت . در چنین مواردی و بمنظور تقویت ( بالا بردن ) سیگنا ل های نوری تضعیف شده از یک یا چندین " تقویت کننده نوری " استفاده می گردد. تقویت کننده نوری از فیبرهای نوری متععدد بهمراه یک روکش خاص (doping) تشکیل می گردند. بخش دوپینگ با استفاده از یک لیزر پمپ می گردد . زمانیکه سیگنال تضعیف شده به روکش دوپینگی می رسد ، انرژی ماحصل از لیزر باعث می گردد که مولکول های دوپینگ شده، به لیزر تبدیل می گردند. مولکول های دوپینگ شده در ادامه باعث انعکاس یک سیگنال نوری جدید و قویتر با همان خصایص سیگنال ورودی تضعیف شده ، خواهند بود.( تقویت کننده لیزری)

دریافت کننده نوری

وظیفه دریافت کننده ، مشابه نقش ملوان بر روی عرشه کشتی ناو دریافت کننده پیام است. دستگاه فوق سیگنال های دیجیتالی نوری را اخذ و پس از رمزگشائی ، سیگنا ل های الکتریکی را برای سایر استفاده کنندگان ( کامپیوتر ، تلفن و ... ) ارسال می نماید. دریافت کننده بمنظور تشخیص نور از یک "فتوسل" و یا "فتودیود" استفاده می کند.

دو شکار از کمربند سیارک ها

 
تازه ترین نمای هابل از دو عضو قلمرو سیارک ها : وستا و سرس

[ اخبار فیزیک ]

اینبار چشمان هابل، کمربند سیارک ها را هدف خود قرار داده است. مکانی میان مریخ و مشتری که از 100 هزار خرده سنگ پر شده است. درشت و ریز. همه نوع اندازه ای را در آن پیدا می کنید. اما از میان این همه خرده سنگ، کدامشان در میدان دید دوربین های هابل قرار گرفته اند ؟ وستا در میدان دید دوربین سیاره ای 2 و سرس در وسط دوربین پیشرفته نقشه برداری قرار گرفته اند. نمای سرس در بهمن ماه سال 82 و تصویر سرس در 24 اردیبهشت امسال، تهیه شد. تصاویر، برای نقشه برداری دقیق از کمربند سیارک ها گرفته شده اند. این نقشه ها در تکمیل اطلاعات ماموریت " طلوع " کمک رسان خواهند بود. ماموریتی که برای بررسی کمربند سیارک ها در نظر گرفته شده است. فضاپیمای طلوع در سال 1399 به وستا و در سال 1404 به سرس می رسد. طلوع اولین فضاپیمایی خواهد بود که به طور اختصاصی، کمربند سیارک ها را مورد مطالعه قرار می دهد. اطلاعاتی که از تصاویر هابل به دست آمده بسیار جالب است.  

در نمای وستا، دانشمندان متوجه دهانه ای به طول 456 کیلومتر در نیمکره جنوبی این سیارک شدند. دهانه ای که صدها هزار سال پیش بر اثر برخورد جسمی بزرگ ایجاد شده است. اگر این جسم به زمین برخورد می کرد می توانست اقیانوس آرام را از میان بردارد! همچنین تغییراتی در غرب و شرق وستا دیده شده که حکایت از آتشفشان های فعال در این سیارک دارد. اما از سرس چه خبر؟ نواحی تیره و روشن این سیارک شاهدی است بر این مدعا که مواد تشکیل دهنده نواحی مختلف این سیارک، با هم متفاوت هستند. شاید علت این اختلاف، اجرامی باشند که پس از برخورد به سرس، مواد تشکیل دهنده آنها در سطح پراکنده می شده و در تشکیل لایه سطحی نقش داشته اند. همچنین شواهدی مبنی بر وجود آب در زیر سطح این سیاره کوتوله وجود دارد. سرس اولین سیارکی است که در سال 1801 در کشف شد. همچنین مقام سومین سیاره کوتوله شناخته شده را بر دوش می کشد! باید تا سال 1404 صبر کنیم و ببینیم که فضاپیمای طلوع از چه اسراری در این سیارک مرموز پرده بر می دارد.

ذرات زیراتمی (Subatomic Particles

در این مقاله انواع ذرات زیراتمی (Subatomic Particles) را به طور مختصر معرفی می کنیم.

هادرون – باریون – بوزون – فرمیون – لپتون – بوزون های شاخص – گلوئن – نوترینوها – موئون – مزون – کوارک – پیون و ....

 

هادرون ها (Hadrons):

ذرات زیراتمی ای هستند که از فرمیون هایی چون کوارک و آنتی کوارک و بوزون هایی چون گلوئن تشکیل شده اند. این ذرات نیروی قوی هسته ای اعمال می کنند.

هادرون ها مانند دیگر ذرات دارای عدد کوانتومی هستند.

این ذرات ممکن است در دما یا فشار بسیار پایین خودبه خود از بین بروند.

 

باریون (Baryon):

ذراتی هستند که از کوارک تشکیل شده اند. برای مثال پروتون از دو کوارک بالا (u) و یک کوارک پایین (d) تشکیل شده و یا نوترون از دو کوارک پایین و یک کوارک بالا تشکیل شده.

انواع باریون طبق مدل استاندارد (SM) به صورت زیر است:

 

 

بوزون (Boson):

ذراتی هستند که داری اسپین صحیح هستند. اکثر بوزون ها می توانند ترکیبی باشند اما گروه بوزون های شاخص (Gauge Bosons) از نوع ترکیبی نیستند.

در مدل استاندارد بوزون ها ذراتی برای انتقال نیرو هستند که شامل فوتون ها (انتقال دهنده ی  الکترومغناطیس) و گراویتون (انتقال دهنده ی گرانش) نیز می شوند.

اتم ها نیز می توانند بوزون باشند. برای مثال هلیم – 4 یک بوزون با اسپین گویا است.

در کل تفاوت زیادی بین استاتیک فرمیونی (اسپین نیمه صحیح) و بوزونی وجود ندارد مگر در مورد اجرام با چگالی بالا که این مورد نیز پیرو استاتیک ماکسول – بولتزمن می باشد.

بر همین مبنا هم بوزون ها و هم فرمیون ها ذراتی کلاسیک شناخته می شوند.

 

بوزون های شاخص (Gauge Bosons):

ذرات بوزونی می باشند که حامل نیروهای بنیادین طبیعت می باشند. بوزون های شاخص خود 3 دسته اند: فوتون ها – بوزون W&Z (بوزون هایی که بدون بار الکتریکی هستند را با Z نشان می دهیم و آن دسته ای را نیروهای ضعیف هسته ای دارند با W نشان می دهیم) و گلوئن ها.

 

گلوئن (Gluon):

ذراتی بدون جرم و خنثی از خانواده ی بوزون های شاخص هستند و دارای اسپین 1 هستند.

این ذرات زیراتمی باعث پایدار بودن کوارک ها در هسته ی اتم (پروتون ها و نوترون ها) در کنار همدیگر می شوند. البته جرم این ذرات از آنجاییکه بسیار کم است (MeV) از آن صرف نظر می شود.

 

بوزون های W&Z:

جرم بوزون های Z در حدود 91.1876 (GeV/C2) و نوع W آن 80.403 (GeV/C2) می باشد. هردوی آنها دارای اسپین 1 هستند و واکنش آنها از نوع ضعیف می باشد. این بوزون ها از خانواده ی بوزون های شاخص هستند.

 

نوترینو (Neutrino):

این ذرات از خانواده ی فرمیون ها و گروه لپتون ها هستند و اسپین 0.5 دارند. نوترینوها اغلب تنها توسط نیروهای ضعیف و گرانش واکنش انجام می دهند.

مدل استاندارد پیش بینی کرده که نوترینوها بدون جرم باشند اما در آزمایشات جرم نوترینو را گرچه بسیار کوچک اما اندازه گیری کرده اند.

نوترینوها اغلب به صورت ذرات منفرد دیده نمی شوند و در قالب الکترون نوترینو (2.2 eV) یا موئون نوترینو (170 KeV) و تاو نوترینو (15.5 MeV) دیده می شوند.

هرچند دانشمندان هنوز یکی بودن پاد نوترینو و نوترینو را تایید نکرده اند اما آزمایشات به روشنی این مطلب را اثبات می کنند. به همین دلیل در مدل استاندارد پاد این ذرات نیز تعریف شده است. (برای مثال الکترون آنتی نوترینو).

 

موئون (Muon):

این ذرات نیز از خانواده ی فرمیون ها و گروه لپتون ها هستند و دارای اسپین 0.5 می باشند.

باز این ذرات همانند الکترون است و جرمشان 105.6583 (MeV/C2) می باشد.

اعمال واکنش در این ذرات به صورت نیروهای گرانشی و الکترومغناطیسی و همچنین نیروهیا ضعیف هسته ای است. این ذرات دارای پاد نیز می باشند.

عمر این ذرات اغلب بیش از 2.2 میکروثانیه نیست که همین گونه نیز از دیگر لپتون ها و مزون ها عمر بیشتری دارند.

موئون با جذب الکترون می تواند اتم موئونیم (Muonium) را بسازد که شعاع آن تقریبا برابر با هیدروژن است. به همین دلیل تا به حال این ذرات در اتم دیده نشده اند.

 

مزون (Meson):

مزون نوعی هادرون با اسپین صحیح می باشد. مزون ها اصولا ترکیبی هستند به صورتیکه در آنها کوارک و آنتی کوارک هم دیده می شود!

مزون ها شامل 3 دسته ی اصلی منفی – مثبت و صفر می باشند:

مزون صفر سنگین (B0) – مزون مثبت یا پیون (Π+)  - مزون منفی یا کائون (K-) – مزون صفر سبک یا اتا (Cη) و مزون های مثبت سنگین یا رو (+ρ).

 

پیون (Pion):

نوعی از مزون ها هستند که دارای بار واحد (هم مثبت و هم منفی) می باشند. پیون ها زا آن جهت مهم هستند که دارای اسپین صفر می باشند و سبک ترین مزون ها هستند.

جرم آنها Π0 = 134.976 (MeV/C2) و Π± = 139.570 (MeV/C2) می باشد.

 

کوارک ها (Quarks):

این ذرات شامل 6 نوع می شوند:

کوارک های بالا (بار 3/2 و جرم 0.003) – Up (u)

کوارک های پایین (بار 3/1- و جرم 0.006) –        Down (d)

کوارک های ربایشی (بار 3/2 و جرم 1.3) – Charm (c)

کوارک های غیر ربایشی (بار 3/1- و جرم 0.1) – Strange (s)

کوارک های زیر (بار 3/2 و جرم 175) – Bottom (b)

کوارک های فوق ( باز 3/1- و جرم 4.3) – Top (t)

 

دایون (Dyon):

ذراتی فرضی که هم بار الکتریکی دارند و هم بار مغناطیسی و اگر در شرایطی بار الکتریکی انها سفر باشد تک قطبی خواهند بود. به این شرایط خاص شرایط کوانتیده شدن دیراک – اشوانزیگر – اشوینگر می گویند.

(توجه کنید که این شرایط به تک قطبی هوفت – پولیاکوف بر نمی گردد بلکه مخصوص تک قطبی دیراک است و لازمه ی آن تعریف هوموتوپی برای توپولوژی فضا و زمان ناپیوسته است).

اکثر تئوری های وحدت (GUT) وجود چنین ذره ای را پیش بینی کرده اند.

 

 

گراویتون (Graviton):

ذراتی فرضی هستند که دارای جرم و بار صفر و اسپین 2 می باشند.

این ذرات بیشتر در تئوری های کوانتومی به عنوان نتیجه ای از نسبیت مطرح می شود.

به طوریکه QCD نیز از آنها نام می برد.

چنین ذراتی (بدون جرم) تا به حالا دیده نشده اند. بنابراین حرف زدن در مورد ویژگی های آنها بسیار سخت است. (مگر از طریق ریاضی که این مقاله جایگاه آن نیست).

 

دیورژانس شدت میدان الکتریکی:

شار:
واژه شار به معنی جریان یا سیال می‌‌باشد1 و هرگاه در مقابل جریان یک کمیت سطحی قرارداده شود، مقدار جریان گذرنده از سطح را شار آن کمیت یا جریان می‌‌گویند.
اما در مورد میدان ها که جریانی عینی ندارد می توان این کمیت فیزیکی را در سطحی تعریف کرد که خطوط میدان از آن می گذرند.
یا به عبارتی دیگر شار تعداد خطوط میدانی است که از سطح مشخص و معینی می گذرند.


شار الکتریکی:

طبق تعریف باید ببینیم از سطح مورد نظر چه تعداد خطوط میدان الکتریکی می گذرد.
که در اینجا می توان از قانون گاوس استفاده کرد که بعد ها به عنوان یکی از قوانین ماکسول مورد استفاده قرار گرفت.

شار مغناطیسی:
شار مغناطیسی گذرنده از یک سطح بسته همواره صفر است. دلیل این مطلب در تعبیر فیزیکی تعریف ریاضی شار در سطح بسته می باشد: خطوط میدان مغناطیسی به دلیل وجود نداشتن تک قطبی مغناطیسی پخش شدگی ندارند.2 که این مسئله معادله شار مغناطیسی را برابر با صفر می کند. پس شار مغناطیسی گذرنده از سطح بسته صفر می باشد.  


قضیه گاوس در میدان گرانشی:

«شار گرانشی گذرنده از یک سطح بسته با جرم محصور درون آن متناسب است.»

اثبات قضیه گاوس در میدان گرانشی:

 
 


 


 
توضیح معادلات:

- پارامترها:

 Da: جزء سطحR:شعاع کرهG:شدت میدان گرانشیM:  جرم محصور شده در سطحK:ثابت گرانش

- توضیح کیفی:

در بخش اول معادله اول تعریف ریاضی شار را می بینیم.

در تساوی دوم از همین معادله تغییر متغیر دادیم و متغیر انتگرال (جزء سطح) را بر حسب شعاع و زاویه فضایی نوشتیم.

حاصل انتگرال در تساوی سوم نمایش داده شده است.

در معادله دوم از تعریف کمی میدان گرانشی کمک گرفتیم و از آن حاصل انتگرال را استخراج کردیم.
و در نهایت در معادله سوم قانون گاوس در میدان گرانشی را می بینید.


دیورژانس میدان گرانشی:

-  قضیه بنیادی دیورژانس:3


- با استفاده از این قضیه می توانیم دیورژانس میدان گرانشی را محاسبه کنیم.
برای اینکار باید از دوطرف نسبت به حجم مشتق بگیریم:



 : چگالی

عبارت پایانی همان مقدار مورد نظر ما می باشد.
 
توضیحات پایانی:

 توضیح شکل: در شکل از یک کره جزء سطحی را انتخاب می کنیم. به همراه این جزء سطح بردار سطحی عمود برآن وجود دارد. بر این کره میدان گرانشی یکنواختی به اندازه معین وارد می شود. پس با گرفتن انتگرال سطحی می توان شار مغناطیسی را بدست آورد.

 
پاورقی:

1-      برگرفته از ویکی پدیا

2-      

3-   به این قضیه  قضیه گرین، گاوس و قضیه بنیادی دورژانس گفته می شود. که ما به اختصار از «قضیه بنیادی دیورژانس» استفاده کردیم.