پندار pen dar

این وبلاگ شامل مطالب علمی وفرهنگی و تفریحی میباشد

پندار pen dar

این وبلاگ شامل مطالب علمی وفرهنگی و تفریحی میباشد

گوش دادن به صدای سیاهچاله ها

 
گوش دادن به صدای سیاهچاله ها
دانشمندان ابررایانه جدیدی طراحی کردند که به کمک آن می توانند امواج ناشی از فعل و انفعالات سیاهچاله ها را بشنوند

[ اخبار فیزیک ]

ایسنا؛ دانشمندان ابررایانه جدیدی طراحی کردند که به کمک آن می توانند امواج ناشی از فعل و انفعالات سیاهچاله ها را بشنوند. این ابررایانه موسوم به SUGAR در دانشگاه سیراکیوس در امریکا مونتاژ می شود. ابررایانه SUGAR به زودی انبوهی از داده ها را از انستیتو فناوری کالیفرنیا دریافت خواهد کرد. SUGAR مجموعه یی از ۸۰ رایانه است که با قدرت ۳۲۰ سی پی یو و ۶۴۰ گیگابایت و با قابلیت دسترسی رندم به حافظه جمع شده است. این ابررایانه مجهز به سیستم داده یی LIGO است که برای تشخیص امواج جاذبه یی مورد استفاده قرار خواهد گرفت. این امواج در رخدادهای عظیم در کائنات دوردست مانند برخورد سیاهچاله ها یا انفجارات ابرنواخترها تولید می شوند. در حالی که «آلبرت اینشتین» وجود این قبیل امواج را در تئوری نسبیت خود در سال ۱۹۱۶ پیش بینی کرده بود اما چندین دهه طول کشید تا فناوری لازم برای شناسایی امواج مزبور به دست بشر ساخته شود.

تئوری بیگ بنگ

عنوان مطلب :
تئوری بیگ بنگ
نوع فایل :
[ PDF ]
اندازه فایل :
124 KB



جهت مشاهده بهتر فایلهای PDF روی عنوان زیر Right Click نموده، سپس با انتخاب گزینه Save Target As فایل را روی کامپیوتر ذخیره کرده و مشاهده نمایید .

انواع مکانیک در فیزیک ( کلاسیک - نوین- لاگرانژی )

انواع مکانیک در فیزیک ( کلاسیک - نوین- لاگرانژی )
انواع مکانیک در فیزیک ( کلاسیک - نوین- لاگرانژی )
مکانیک کلاسیک یکی از قدیمیترین و آشناترین شاخه‌های فیزیک است. این شاخه با اجسام در حال سکون و حرکت ، و شرایط سکون و حرکت آنها تحت تاثیر نیروهای داخلی و خارجی ، سرو‌ کار دارد...

[ مکانیک و ترمودینامیک ]

انواع مکانیک در فیزیک (کلاسیک-نوین-لاگرانژی-
فیزیک

مکانیک کلاسیک یکی از قدیمیترین و آشناترین شاخه‌های فیزیک است. این شاخه با اجسام در حال سکون و حرکت ، و شرایط سکون و حرکت آنها تحت تاثیر نیروهای داخلی و خارجی ، سرو‌ کار دارد. قوانین مکانیک به تمام گستره اجسام ، اعم از میکروسکوپی یا ماکروسکوپی، از قبیل الکترونها در اتمها و سیارات در فضا یا حتی به کهکشانها در بخش‌های دور دست جهان اعمال می‌شود.

سینماتیک حرکت:

سینماتیک به توصیف هندسی محض حرکت ( یا مسیرهای) اجسام ، بدون توجه به نیروهایی که این حرکت را ایجاد کرده‌اند ، می‌پردازد. در این بررسی عاملین حرکت (نیروهای وارد بر جسم) مد نظر نیست و با مفاهیم مکان ، سرعت ، شتاب ، زمان و روابط بین آنها سروکار دارد. در این علم ابتدا اجسام را بصورت ذره نقطه‌ای بررسی نموده و سپس با مطالعه حرکت جسم صلب حرکت واقعی اجسام دنبال می‌شود.



حرکت اجسام به دو صورت مورد بررسی است:


  • سینماتیک انتقالی:
    در این نوع حرکت پارامترهای سیستم به صورت خطی هستند و مختصات فضایی سیستم‌ها فقط انتقال می‌یابد. از اینرو حرکت انتقالی مجموعه مورد بررسی قرار می‌گیرد. کمیت مورد بحث در سینماتیک انتقالی شامل جابه‌جایی ، سرعت خطی ، شتاب خطی ، اندازه حرکت خطی و...می‌باشد.

  • سینماتیک دورانی:
    در این نوع حرکت برخلاف حرکت انتقالی پارامتر اصلی حرکت تغییر زاویه می‌باشد. به عبارتی از تغییر جهت حرکت ، سرعت و شتاب زاویه‌ای حاصل می‌شود. و مختصات فضایی سیستم ‌ها فقط دوران می‌یابند. جابه‌جایی زاویه‌ای ، سرعت زاویه‌ای ، شتاب زاویه‌ای و اندازه حرکت زاویه‌ای از جمله کمیات مورد بحث در این حرکت می‌باشند.

دینامیک حرکت :


دینامیک به نیروهایی که موجب تغییر حرکت یا خواص دیگر ، از قبیل شکل و اندازه اجسام می‌شوند می‌پردازد. این بخش ما را با مفاهیم نیرو و جرم و قوانین حاکم بر حرکت اجسام هدایت می‌کند. یک مورد خاص در دینامیک ایستاشناسی است که با اجسامی که تحت تاثیر نیروهای خارجی در حال سکون هستند سروکار دارد.

پایه گذاران مکانیک کلاسیک:


  • با این که شروع مکانیک از کمیت سرچشمه می‌گیرد ، در زمان ارسطو فرایند فکری مربوط به آن گسترش سریعی پیدا کرد. اما از قرن هفدهم به بعد بود که مکانیک توسط گالیله ، هویگنس و اسحاق نیوتن بدرستی پایه‌گذاری شد. آنها نشان دادند که اجسام طبق قواعدی حرکت می‌کنند ، و این قواعد به شکل قوانین حرکت بیان شدند. مکانیک کلاسیک یا نیوتنی عمدتا با مطالعه پیامدهای قوانین حرکت سروکار دارد.

  • قوانین سه گانه اسحاق نیوتن راه مستقیم و سادهای به موضوع مکانیک کلاسیک می‌گشاید.این قوانین عبارتند از:

    • قانون اول نیوتن:
      هر جسمی به حالت سکون یا حرکت یکنواخت خود در روی یک خط مستقیم ادامه می‌دهد مگر اینکه یک نیروی خارجی خالص به آن داده شود و آن حالت را تغییر دهد.

    • قانون دوم نیوتن:
      آهنگ تغییر تکانه خطی یک جسم با برآیند نیروهای وارد بر آن متناسب بوده و در جهت آن قرار دارد.

    • قانون سوم نیوتن:
      این قانون که به قانون عمل و عکس‌العمل معروف است ، اینگونه بیان می‌شود. هر عملی را عکس العملی است ، مساوی با آن و در خلاف جهت آن.

  • فرمولبندی لاگرانژی مکانیک کلاسیک:
در برسی حرکت اجسام به کمک قوانین نیوتون اجسام به صورت ذره‌ای در نظر گرفته می‌شود. بنابراین ، بررسی حرکات سیستم های چند ذره‌ای ، اجسام صلب ، دستگاه‌های با جرم متغیر ، حرکات جفت شده و ... به کمک قوانین اسحاق نیوتن به سختی صورت می‌گیرد. لاگرانژ و هامیلتون دو روش مستقلی را برای حل این مشکل پیشنهاد کردند. در این روشها برای هر سیستم یک لاگرانژین (هامیلتونین) تعریف کرده ، سپس به کمک معادلات اویلر-لاگرانژ (هامیلتون-ژاکوپی) حرکات محتمل سیستمها مورد بررسی قرار می‌گیرد.

موارد شکست فرمولبندی اسحاق نیوتن :


  • تا آغاز قرن حاضر . قوانین اسحاق نیوتن بر تمام وضعیتهای شناخته شده کاملا قابل اعمال بودند. مشکل هنگامی بروز کرد که این فرمولبندی به چند وضعیت معین زیر اعمال شدند:

  • اجسام بسیار سریع:
    اجسامی که با سرعت نزدیک به سرعت نور حرکت می‌کنند.

  • اجسام با ابعاد میکروسکوپی مانند الکترونها در اتم‌ها.

شکست مکانیک کلاسیک در این وضعیتها ، نتیجه نارسایی مفاهیم کلاسیکی فضا و زمان است.

مکمل مکانیک کلاسیک:


مشکلات موجود در سر راه مکانیک کلاسیک منجر به پیدایش دو نظریه زیر شد:

  • فرمولبندی نظریه نسبیت خاص برای اجسام متحرک با سرعت زیاد

  • فرمولبندی مکانیک کوانتومی برای اجسام با ابعاد میکروسکوپی
مکانیک لاگرانژی

اطلاعات اولیه

کاربرد مستقیم قوانین حرکت نیوتن برای حرکت سیستم‌های ساده راحت و آسان است. اما در صورتی که تعداد ذرات سیستم بیشتر شود، در این صورت استفاده از قوانین نیوتن کار دشواری خواهد بود. در این حالت از یک روش عمومی ، پیچیده و بسیار دقیق که به همت ریاضیدان فرانسوی ژوزف لویی لاگرانژ ابداع شده است، استفاده می‌شود. به این ترتیب می‌توان معادلات حرکت برای تمام سیستمهای دینامیکی را پیدا کرد. این روش چون نسبت به معادلات نیوتن حالت کلی تری دارد، لذا در مورد حالتهای ساده که با معادلات حرکت نیوتن به راحتی حل می‌شود، نیز قابل اعمال است.

مختصات تعمیم یافته

موقعیت یک ذره در فضا را می‌توان با سه سیستم مختصات مشخص کرد. این سیستمها عبارتند از سیستمهای کارتزین ، کروی و استوانه‌ای ، یا در حقیقت هر سه پارامتر مناسب دیگری که انتخاب شده باشند. اگر ذره مجبور به حرکت در یک صفحه یا سطح ثابت باشد فقط به دو مختصه برای مشخص کردن موقغیت ذره نیاز است، در حالیکه اگر ذره روی یک خط مستقیم یا یک منحنی ثابت حرکت کند، ذکر یک مختصه کافی خواهد بود. اما در مورد یک سیستم متشکل از N ذره ، برای تشخیص کامل موقعیت همزمان تمام ذرات به 3N مختصه نیاز خواهیم داشت.

اگر محدودیتهای بر سیستم اعمال شده باشد، تعداد مختصات لازم برای مشخص کردن پیکربندی کمتر از 3N خواهد بود. به عنوان مثال ، اگر سیستم مورد نظر یک جسم صلب باشد، برای مشخص کردن پیکربندی آن فقط به موقعیت مکانی یک نقطه مرجع مناسب از جسم (مثلا مرکز جرم) و جهت یابی آن نقطه در فضا احتیاج داریم. بنابراین در حالت کلی برای مشخص کردن پیکربندی یک سیستم خاص ، احتیاج به تعداد حداقل معین n مختصه نیاز است. این مختصات را مختصات تعمیم یافته می‌گویند.

نیروی تعمیم یافته

در سیستم مختصات تعمیم یافته ، به جای نیروهایی که در مکانیک کلاسیک نیوتنی معمول است، مرتبط با هر مختصه نیرویی تعریف می‌شود که به نام نیروی تعمیم یافته معروف است. این کمیت که با استفاده از تعریف کار محاسبه می‌شود، به این صورت است که حاصل ضرب آن در مختصه تعمیم یافته دارای ابعاد کار است. بنابراین اگر مختصه تعمیم یافته دارای بعد فاصله باشد در این صورت این کمیت از جنس نیرو خواهد بود. در صورتیکه مختصه تعمیم یافته از نوع زاویه باشد، در این صورت این کمیت دارای بعد گشتاور خواهد بود. یعنی متناسب با نوع مختصه تصمیم یافته می‌تواند از جنس نیرو و یا گشتاور نیرو باشد.

معادلات لاگرانژ

برای بررسی حرکت یک سیستم در مکانیک لاگرانژی انرژی جبنشی و انرژی پتانسیل سیستم را تعیین می‌کنند. این کار به این صورت می‌گیرد که در مکانیک لاگرانژین در مورد هر سیستم دو کمیت جدید به نام‌های لاگرانژین و هامیلتونین تعریف می‌شود. لاگرانژین برابر تفاضل انرژی پتانسیل از انرژی جنبشی است. در صورتی که هامیلتون برابر با مجموع انرژی جنبشی و انرژی پتانسیل سیستم است. در واقع می‌توان گفت که کار اصلی تعیین و محاسبه صحیح انرژی جنبشی و پتانسیل است.

سپس این مقادیر در معادله‌ای که به معادله لاگرانژ حرکت معروف است قرار داده می‌شود. معادله لاگرانژ ، معادله‌ای است که بر حسب مشتقات تابع لاگرانژی نسبت به مختصات تعمیم یافته و نیز مشتق زمانی مشتقات تابع لاگرانژی نسبت به سرعتهای تعمیم یافته نوشته شده است. به عبارت دیگر اگر تابع لاگرانژی را با L نشان دهیم و مختصات تعمیم یافته را با qk و سرعت‌های تعمیم یافته را با qk (که نقطه بیانگر مشتق زمانی مختصه تعمیم یافته qk است) نشان دهیم، معادلات لاگرانژ به صورت زیر خواهد بود:
در صورتی که نیروهای موجود در سیستم همگی پایستار نباشند، به عنوان مثال یک نیروی غیر پایستار مانند اصطکاک وجود داشته باشد در این صورت در طرف دوم معادلات لاگرانژ عبارت Qk که بیانگر نیروی تعمیم یافته غیر پایستار است، نیز اضافه می‌شود.

معادلات لاگرانژ برای تمام مختصات یکسان هستند. این معادلات ، روش یک نواختی برای بدست آوردن معادلات دیفرانسیل حرکت یک سیستم در انواع سیستم‌های ارائه خواهند داد.

اصل تغییرات هامیلتون

روش دیگر برای استنتاج معادلات لاگرانژ اصل تغییرات هامیلتونی است. در این حالت همانگونه که قبلا نیز اشاره شد در مورد هر سیستم کمیتی به نام تابع هامیلتونی تعریف می‌شود که برابر با مجموع انرژی جنبشی و انرژی پتانسیل سیستم است. این اصل در سال 1834 توسط ریاضیدان اپرلندی ویلیام .ر. هامیلتون ارائه شد.

در این روش فرض می‌شود که یک تابع پتانسیل وجود دارد، یعنی سیستم تحت بررسی یک سیستم پایاست. ولی اگر تعدادی از نیروها نیز غیر پایستار باشد مانند مورد معادلات لاگرانژ می‌توان سهم این نیرو ها را نیز بطور جداگانه منظور کرد. یعنی در این حالت تابع هامیلتون برابر با مجموع انرژی جنبشی و کار انجام شده توسط تمام نیروها اعم از نیروهای پایستار و غیر پایستار است.

معادلات هامیلتون

معدلات هامیلتون از 2n معادله دیفرانسیل درجه اول تشکیل شده است. این معادلات بر حسب اندازه حرکت تعمیم یافته و مشتقات آن نوشته می‌شود. اندازه حرکت تعمیم یافته به صورت مشتقات تابع لاگرانژی نسبیت به سرعت تعمیم یافته تعریف می‌شود. بنابراین این معادلات زیر خواهند بود.


در عبارت فوق qk بیانگر سرعت تعمیم یافته است و علامت نقطه در بالای Pk (اندازه حرکت تعمیم یافته) بیانگر مشتق زمانی است. اگر معادلات هامیلتون را با معادلات لاگرانژی مقیسه کنیم ملاحظه می‌شود که تعداد اولین معادلات زیاد است. یعنی اگر سیستم V با N مختصه یافته مشخص شود، در این صورت معادلات هامیلتون شامل 2n معادله دیفرانسیل درجه اول هستند، در صورتیکه معادلات لاگرانژ از n معادله درجه دوم تشکیل شده است. بنابراین کار کردن با معادلات هامیلتون راحتتر است. معمولا در مکانیک کوانتومی‌ و مکانیک کاری از معادلات هامیلتون استفاده می‌شود.

MRI چیست ؟

 

MRI چیست ؟

MRI=magnetic resonance imaging

یکی از بهترین تکنیکهادر دنیای پزشکی در تشخیص بیماریها استفاده از تصویربرداری تشدید مغناطیسی(MRI)است که بدون تابش اشعه ایکس می توان اسکن های واضحی از بافتهای مختلف بدن گرفت .

پدیده تشدید مغناطیسی اولین بار تو سط دو فیزیکدان بنامهای فلیکس بلاچ و ادوارد پارکل بطور جداگانه کشف گردید با این کشف انها در سال 1952 مفتخر به دریافت جایزه نوبل گردیدند.

سرانجام در سال 1970 دکترریموند دامادین به این فکر افتاد که از فراوانی اب در بدن برای تصویر برداری به روش تشدید مغناطیسی استفاده کند

در این روش برای ایجاد یک تصویر سه بعدی بدن از سه جهت تحت تابش یک میدان مغناطیسی قوی قرار می گیردکه شدت ان گاهی 60000 برابر شدت میدان مغناطیس زمین می باشد.

وچون در تمام اندامهای بدن به میزان معینی اب وجوداردبدیهی است که هیدروژنهای موجود در اب که دوقطبی هستند تحت تاثیرمیدان مغناطیسی قرار گیرندو تقریبا در یک جهت بخط شوندکهاگر در این حالت به بدن امواج رادیویی با فرکانس معین بتابانیم سبب تولید یک جریان الکتریکی توسط هیدروژن خواهد شد و می توان با یک تقویت کننده وکامپیوتر تصویری از ان ناحیه معین بوجود اورد.

پزشکان با استفاده از این تکنیک ارزشمند توانستند از بافتهای مختلفی مانند مغز تصاویر واضحی بدست اورند در شکل زیر یک اسکن از سر انسان بروش MRIرا میبینیداگرتوموری در ان باشد ان تومور به صورت لکه ای در تصویر ظاهر خواهد شدکه رنگش با سایر نقاط سر متفاوت است زیرا میزان هیدرژن تومور با میزان هیدرژنهای اطراف فرق میکند بنابراین پس از تابش امواج رادیویی سیگنالها ودر نتیجه تصویر مربوط به ان ایجاد می شود امروزه پزشکان با استفاده از این فناوری می توانند با تشخیص محل لخته شدن خون در قلب و یا مغز از وقوع سکته در انسان جلوگیری کنند.

هنگامی که بیماری برای اسکن به این روش اماده میشود باید دقت شود که همراه وی هیچ گونه فلزی نباشد زیرا سبب اختلال در تصویر می شود.همچنین افرادی که در دستها یا پاهایشان پلاتین کار گذاشته شده ویا افرادی که از باطریهای قلب استفاده میکنند نباید از این روش برای عکس برداری استفاده نمایند.زیرا وسایل فلزی تحت تاثیر میدان می توانند در بدن حرکت کنند.

دیورژانس شدت میدان گرانشی

 
دیورژانس شدت میدان گرانشی
واژه شار به معنی جریان یا سیال می‌‌باشد و هرگاه در مقابل جریان یک کمیت سطحی قرارداده شود، مقدار جریان گذرنده از سطح را شار آن کمیت یا جریان می‌‌گویند. اما در مورد میدان ها که جریانی عینی ندارد می توان این کمیت فیزیکی را در سطحی تعریف کرد که خطوط میدان از آن می گذرند ...

[ الکترومغناطیس ]

دیورژانس شدت میدان گرانشی
 


شار: 

واژه شار به معنی جریان یا سیال می‌‌باشد1 و هرگاه در مقابل جریان یک کمیت سطحی قرارداده شود، مقدار جریان گذرنده از سطح را شار آن کمیت یا جریان می‌‌گویند.
اما در مورد میدان ها که جریانی عینی ندارد می توان این کمیت فیزیکی را در سطحی تعریف کرد که خطوط میدان از آن می گذرند.
یا به عبارتی دیگر شار تعداد خطوط میدانی است که از سطح مشخص و معینی می گذرند.


شار الکتریکی:

طبق تعریف باید ببینیم از سطح مورد نظر چه تعداد خطوط میدان الکتریکی می گذرد.
که در اینجا می توان از قانون گاوس استفاده کرد که بعد ها به عنوان یکی از قوانین ماکسول مورد استفاده قرار گرفت.

شار مغناطیسی:
شار مغناطیسی گذرنده از یک سطح بسته همواره صفر است. دلیل این مطلب در تعبیر فیزیکی تعریف ریاضی شار در سطح بسته می باشد: خطوط میدان مغناطیسی به دلیل وجود نداشتن تک قطبی مغناطیسی پخش شدگی ندارند.2 که این مسئله معادله شار مغناطیسی را برابر با صفر می کند. پس شار مغناطیسی گذرنده از سطح بسته صفر می باشد.  


قضیه گاوس در میدان گرانشی:

«شار گرانشی گذرنده از یک سطح بسته با جرم محصور درون آن متناسب است.»

اثبات قضیه گاوس در میدان گرانشی:

 
 


 


 
توضیح معادلات:

- پارامترها:

 Da: جزء سطحR:شعاع کرهG:شدت میدان گرانشیM:  جرم محصور شده در سطحK:ثابت گرانش

- توضیح کیفی:

در بخش اول معادله اول تعریف ریاضی شار را می بینیم.

در تساوی دوم از همین معادله تغییر متغیر دادیم و متغیر انتگرال (جزء سطح) را بر حسب شعاع و زاویه فضایی نوشتیم.

حاصل انتگرال در تساوی سوم نمایش داده شده است.

در معادله دوم از تعریف کمی میدان گرانشی کمک گرفتیم و از آن حاصل انتگرال را استخراج کردیم.
و در نهایت در معادله سوم قانون گاوس در میدان گرانشی را می بینید.


دیورژانس میدان گرانشی:

-  قضیه بنیادی دیورژانس:3


- با استفاده از این قضیه می توانیم دیورژانس میدان گرانشی را محاسبه کنیم.
برای اینکار باید از دوطرف نسبت به حجم مشتق بگیریم:



 : چگالی

عبارت پایانی همان مقدار مورد نظر ما می باشد.
 
توضیحات پایانی:

 توضیح شکل: در شکل از یک کره جزء سطحی را انتخاب می کنیم. به همراه این جزء سطح بردار سطحی عمود برآن وجود دارد. بر این کره میدان گرانشی یکنواختی به اندازه معین وارد می شود. پس با گرفتن انتگرال سطحی می توان شار مغناطیسی را بدست آورد.

 
پاورقی:

1-      برگرفته از ویکی پدیا

2-      

3-   به این قضیه  قضیه گرین، گاوس و قضیه بنیادی دورژانس گفته می شود. که ما به اختصار از «قضیه بنیادی دیورژانس» استفاده کردیم.